博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
帆软FineReport如何使用程序数据集
阅读量:5878 次
发布时间:2019-06-19

本文共 10522 字,大约阅读时间需要 35 分钟。

大多数情况下,FineReport直接在设计器里使用“数据集查询”,直接写SQL就能满足报表要求,但对于一些复杂的报表,有时候SQL处理并不方便,这时可以把查询结果在应用层做一些预处理后,再传递给报表,即所谓的“程序数据集”,FineReport的帮助文档上给了一个示例:

1 package com.fr.data;     2     3 import java.sql.Connection;     4 import java.sql.DriverManager;     5 import java.sql.ResultSet;     6 import java.sql.ResultSetMetaData;     7 import java.sql.Statement;     8 import java.util.ArrayList;     9 import com.fr.base.FRContext;    10 import com.fr.data.AbstractTableData;    11 import com.fr.base.Parameter;    12    13 public class ParamTableDataDemo extends AbstractTableData {    14     // 列名数组,保存程序数据集所有列名    15     private String[] columnNames = null;    16     // 定义程序数据集的列数量    17     private int columnNum = 10;    18     // 保存查询表的实际列数量    19     private int colNum = 0;    20     // 保存查询得到列值    21     private ArrayList valueList = null;    22    23     // 构造函数,定义表结构,该表有10个数据列,列名为column#0,column#1,。。。。。。column#9    24     public ParamTableDataDemo() {    25         // 定义tableName参数    26         this.parameters = new Parameter[] { new Parameter("tableName") };    27         // 定义程序数据集列名    28         columnNames = new String[columnNum];    29         for (int i = 0; i < columnNum; i++) {    30             columnNames[i] = "column#" + String.valueOf(i);    31         }    32     }    33    34     // 实现其他四个方法    35     public int getColumnCount() {    36         return columnNum;    37     }    38    39     public String getColumnName(int columnIndex) {    40         return columnNames[columnIndex];    41     }    42    43     public int getRowCount() {    44         init();    45         return valueList.size();    46     }    47    48     public Object getValueAt(int rowIndex, int columnIndex) {    49         init();    50         if (columnIndex >= colNum) {    51             return null;    52         }    53         return ((Object[]) valueList.get(rowIndex))[columnIndex];    54     }    55    56     // 准备数据    57     public void init() {    58         // 确保只被执行一次    59         if (valueList != null) {    60             return;    61         }    62         // 保存得到的数据库表名    63         String tableName = parameters[0].getValue().toString();    64         // 构造SQL语句,并打印出来    65         String sql = "select * from " + tableName + ";";    66         FRContext.getLogger().info("Query SQL of ParamTableDataDemo: \n" + sql);    67         // 保存得到的结果集    68         valueList = new ArrayList();    69         // 下面开始建立数据库连接,按照刚才的SQL语句进行查询    70         Connection conn = this.getConnection();    71         try {    72             Statement stmt = conn.createStatement();    73             ResultSet rs = stmt.executeQuery(sql);    74             // 获得记录的详细信息,然后获得总列数    75             ResultSetMetaData rsmd = rs.getMetaData();    76             colNum = rsmd.getColumnCount();    77             // 用对象保存数据    78             Object[] objArray = null;    79             while (rs.next()) {    80                 objArray = new Object[colNum];    81                 for (int i = 0; i < colNum; i++) {    82                     objArray[i] = rs.getObject(i + 1);    83                 }    84                 // 在valueList中加入这一行数据    85                 valueList.add(objArray);    86             }    87             // 释放数据库资源    88             rs.close();    89             stmt.close();    90             conn.close();    91             // 打印一共取到的数据行数量    92             FRContext.getLogger().info(    93                     "Query SQL of ParamTableDataDemo: \n" + valueList.size()    94                             + " rows selected");    95         } catch (Exception e) {    96             e.printStackTrace();    97         }    98     }    99   100     // 获取数据库连接 driverName和 url 可以换成您需要的   101     public Connection getConnection() {   102         String driverName = "sun.jdbc.odbc.JdbcOdbcDriver";   103         String url = "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=D:\\FineReport_7.0\\WebReport\\FRDemo.mdb";   104         String username = "";   105         String password = "";   106         Connection con = null;   107         try {   108             Class.forName(driverName);   109             con = DriverManager.getConnection(url, username, password);   110         } catch (Exception e) {   111             e.printStackTrace();   112             return null;   113         }   114         return con;   115     }   116   117     // 释放一些资源,因为可能会有重复调用,所以需释放valueList,将上次查询的结果释放掉   118     public void release() throws Exception {   119         super.release();   120         this.valueList = null;   121     }   122 }
View Code

这个示例我个人觉得有二个地方不太方便:

1、db连接串硬编码写死在代码里,维护起来不太方便,目前大多数b/s应用,对于数据库连接,通常是利用spring在xml里配置datasource bean,运行时动态注入

2、将查询出的结果,填充到数据集时,采用的是数字索引(见82行),代码虽然简洁,但是可读性比较差

折腾一番后,于是便有了下面的改进版本:

1 package infosky.ckg.fr.data;  2   3 import infosky.ckg.utils.AppContext;  4 import java.sql.Connection;  5 import java.sql.ResultSet;  6 import java.sql.Statement;  7 import java.util.LinkedHashMap;  8 import java.util.LinkedHashSet;  9 import javax.sql.DataSource; 10 import com.fr.base.Parameter; 11 import com.fr.data.AbstractTableData; 12 import com.fr.general.data.TableDataException; 13  14 public class ParameterLinkedHashSetDataDemo extends AbstractTableData { 15  16     private static final long serialVersionUID = 8818000311745955539L; 17  18     // 字段名枚举 19     enum FIELD_NAME { 20         EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, JOB_ID, SALARY 21     } 22  23     private String[] columNames; 24  25     private LinkedHashSet
> rowData; 26 27 public ParameterLinkedHashSetDataDemo() { 28 this.parameters = new Parameter[] { new Parameter("jobId"), 29 new Parameter("minSalary"), new Parameter("maxSalary") }; 30 31 // 填充字段名 32 columNames = new String[FIELD_NAME.values().length]; 33 int i = 0; 34 for (FIELD_NAME fieldName : FIELD_NAME.values()) { 35 columNames[i] = fieldName.toString(); 36 i++; 37 } 38 39 } 40 41 @Override 42 public int getColumnCount() throws TableDataException { 43 return columNames.length; 44 } 45 46 @Override 47 public String getColumnName(int columnIndex) throws TableDataException { 48 return columNames[columnIndex]; 49 } 50 51 @Override 52 public int getRowCount() throws TableDataException { 53 queryData(); 54 return rowData.size(); 55 } 56 57 @Override 58 public Object getValueAt(int rowIndex, int columnIndex) { 59 queryData(); 60 int tempRowIndex = 0; 61 for (LinkedHashMap
row : rowData) { 62 if (tempRowIndex == rowIndex) { 63 return row.get(columNames[columnIndex]); 64 } 65 tempRowIndex += 1; 66 } 67 return null; 68 } 69 70 // 查询数据 71 private void queryData() { 72 // 确保只被执行一次 73 if (rowData != null) { 74 return; 75 } 76 77 // 传入的参数 78 String jobId = parameters[0].getValue().toString(); 79 float minSalary = Float.parseFloat(parameters[1].getValue().toString()); 80 float maxSalary = Float.parseFloat(parameters[2].getValue().toString()); 81 82 // 拼装SQL 83 String sql = "select * from EMPLOYEES where JOB_ID='" + jobId 84 + "' and SALARY between " + minSalary + " and " + maxSalary; 85 86 rowData = new LinkedHashSet
>(); 87 88 Connection conn = this.getConnection(); 89 try { 90 Statement stmt = conn.createStatement(); 91 // 执行查询 92 ResultSet rs = stmt.executeQuery(sql); 93 while (rs.next()) { 94 // 填充行数据 95 // 注:字段赋值的顺序,要跟枚举里的顺序一样 96 LinkedHashMap
row = new LinkedHashMap
(); 97 row.put(FIELD_NAME.EMPLOYEE_ID.toString(), 98 rs.getInt(FIELD_NAME.EMPLOYEE_ID.toString())); 99 row.put(FIELD_NAME.FIRST_NAME.toString(),100 rs.getString(FIELD_NAME.FIRST_NAME.toString()));101 row.put(FIELD_NAME.LAST_NAME.toString(),102 rs.getString(FIELD_NAME.LAST_NAME.toString()));103 row.put(FIELD_NAME.EMAIL.toString(),104 rs.getString(FIELD_NAME.EMAIL.toString()));105 row.put(FIELD_NAME.PHONE_NUMBER.toString(),106 rs.getString("PHONE_NUMBER"));107 row.put(FIELD_NAME.HIRE_DATE.toString(),108 rs.getDate(FIELD_NAME.HIRE_DATE.toString()));109 row.put(FIELD_NAME.JOB_ID.toString(),110 rs.getString(FIELD_NAME.JOB_ID.toString()));111 row.put(FIELD_NAME.SALARY.toString(),112 rs.getFloat(FIELD_NAME.SALARY.toString()));113 rowData.add(row);114 }115 rs.close();116 stmt.close();117 conn.close();118 } catch (Exception e) {119 e.printStackTrace();120 }121 122 }123 124 // 获取数据库连接125 private Connection getConnection() {126 Connection con = null;127 try {128 DataSource dataSource = AppContext.getInstance().getAppContext()129 .getBean("dataSource", DataSource.class);130 con = dataSource.getConnection();131 } catch (Exception e) {132 e.printStackTrace();133 return null;134 }135 return con;136 }137 138 // 释放资源139 public void release() throws Exception {140 super.release();141 this.rowData = null;142 }143 144 }
View Code

改进的地方:

1、getConnection方法,利用Spring注入datasource,当然为了注入方便,还需要一个辅助类AppContext

1 package infosky.ckg.utils; 2  3 import org.springframework.context.support.AbstractApplicationContext; 4 import org.springframework.context.support.ClassPathXmlApplicationContext; 5  6 public class AppContext { 7     private static AppContext instance; 8  9     private AbstractApplicationContext appContext;10 11     public synchronized static AppContext getInstance() {12         if (instance == null) {13             instance = new AppContext();14         }15         return instance;16     }17 18     private AppContext() {19         this.appContext = new ClassPathXmlApplicationContext(20                 "spring/root-context.xml");21     }22 23     public AbstractApplicationContext getAppContext() {24         return appContext;25     }26 27 }
View Code

classes/spring/root-context.xml 里配置db连接

1 
2
6 7
9
10 11
12
13
14
15
View Code

2、将原来的数组,换成了LinkedHashSet<LinkedHashMap<String, Object>>,这样db查询结果填充到"数据集"时,处理代码的可读性就多好了(见queryData方法),但也要注意到LinkedHashSet/LinkedHashMap的性能较Array而言,有所下降,正所谓:有所得必有得失。但对于复杂的汇总统计报表,展示的数据通常不会太多,所以这个问题我个人看来并不严重。

 

转载地址:http://ffdix.baihongyu.com/

你可能感兴趣的文章
ionic 调用手机的打电话功能
查看>>
怎么使用阿里云直播服务应用到现在主流直播平台中
查看>>
Xcode全局替换内容,一键Replace
查看>>
1000 加密算法
查看>>
exif_imagetype() 函数在linux下的php中不存在
查看>>
Ruby的case语句
查看>>
Linux的链接文件-ln命令
查看>>
maven的tomcat插件如何进行debug调试
查看>>
table表头固定
查看>>
截取字符串中两个字符串中的字符串
查看>>
spring xml properties split with comma for list
查看>>
判断点是否在三角形内
查看>>
Android实战简易教程-第二十三枪(基于Baas的用户注冊验证username是否反复功能!)...
查看>>
在odl中怎样实现rpc
查看>>
leetcode 110 Balanced Binary Tree
查看>>
python活用isdigit方法显示系统进程
查看>>
项目开发总结
查看>>
知行合一
查看>>
jmeter插件之jsonpath提取响应结果和做断言
查看>>
发布支持多线程的PowerShell模块 —— MultiThreadTaskRunner
查看>>